1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Ahmad Lattimore edited this page 2025-02-18 01:08:17 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled variations ranging from 1.5 to 70 billion criteria to build, experiment, and responsibly scale your generative AI concepts on AWS.

In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled variations of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that uses support discovering to enhance thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A key differentiating feature is its reinforcement knowing (RL) action, which was utilized to fine-tune the model's actions beyond the standard pre-training and tweak process. By including RL, DeepSeek-R1 can adjust better to user feedback and goals, ultimately improving both importance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, meaning it's equipped to break down complicated queries and factor through them in a detailed way. This assisted reasoning procedure allows the design to produce more accurate, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT abilities, aiming to produce structured responses while focusing on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has recorded the industry's attention as a flexible text-generation model that can be incorporated into various workflows such as representatives, rational reasoning and information analysis jobs.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion parameters, allowing effective reasoning by routing queries to the most appropriate specialist "clusters." This method enables the design to concentrate on different problem domains while maintaining total performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking abilities of the main R1 model to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more efficient models to imitate the behavior and reasoning patterns of the bigger DeepSeek-R1 model, using it as a teacher model.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this design with guardrails in location. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent harmful material, and assess designs against essential security requirements. At the time of writing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create several guardrails tailored to various usage cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limitation increase, develop a limitation boost demand and reach out to your account group.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For instructions, see Establish approvals to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to introduce safeguards, avoid harmful material, and evaluate models against crucial safety requirements. You can execute precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to assess user inputs and model reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general circulation includes the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following areas demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, pick Model catalog under Foundation designs in the navigation pane. At the time of this post, you can utilize the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and pick the DeepSeek-R1 model.

The model detail page offers essential details about the design's capabilities, rates structure, and execution guidelines. You can find detailed usage directions, including sample API calls and code snippets for combination. The model supports different text generation tasks, including material creation, code generation, and question answering, using its support finding out optimization and CoT reasoning abilities. The page likewise consists of deployment choices and licensing details to assist you get begun with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, pick Deploy.

You will be triggered to set up the implementation details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of circumstances, go into a variety of circumstances (between 1-100). 6. For example type, pick your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can configure sophisticated security and infrastructure settings, including virtual personal cloud (VPC) networking, service role authorizations, and encryption settings. For many utilize cases, the default settings will work well. However, for production deployments, you might wish to review these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to start utilizing the model.

When the release is total, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive interface where you can try out different triggers and change design specifications like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimal outcomes. For instance, material for reasoning.

This is an excellent way to explore the design's thinking and text generation capabilities before incorporating it into your applications. The play area supplies immediate feedback, assisting you understand how the design responds to different inputs and letting you tweak your triggers for ideal results.

You can rapidly evaluate the design in the play area through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to carry out reasoning utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have produced the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime client, configures inference criteria, and sends out a demand to produce text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, bytes-the-dust.com and prebuilt ML services that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart offers two practical methods: using the intuitive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both methods to assist you choose the method that best matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The design internet browser displays available designs, with details like the provider name and design capabilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card. Each design card reveals key details, including:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if applicable), indicating that this model can be signed up with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to invoke the design

    5. Choose the design card to see the model details page.

    The design details page consists of the following details:

    - The design name and company details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab consists of important details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you release the design, it's suggested to examine the model details and license terms to validate compatibility with your usage case.

    6. Choose Deploy to continue with release.

    7. For Endpoint name, utilize the automatically produced name or produce a custom one.
  1. For example type ¸ choose an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the number of circumstances (default: 1). Selecting appropriate instance types and counts is essential for cost and efficiency optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for precision. For this model, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to deploy the model.

    The implementation process can take a number of minutes to complete.

    When release is total, your endpoint status will alter to InService. At this moment, the design is ready to accept reasoning requests through the endpoint. You can keep an eye on the deployment development on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the release is total, you can invoke the model utilizing a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the necessary AWS permissions and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the model is offered in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Clean up

    To prevent unwanted charges, complete the actions in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you deployed the design using Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace implementations.
  5. In the Managed releases section, find the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the appropriate implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies construct innovative solutions utilizing AWS services and accelerated calculate. Currently, he is concentrated on establishing methods for fine-tuning and enhancing the reasoning performance of big language designs. In his downtime, Vivek takes pleasure in hiking, enjoying movies, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about developing options that assist consumers accelerate their AI journey and unlock business value.